PHDKU18

Subject Code: 19-Geology

તમને કહેવામાં ન આવે ત્યાં સુધી પ્રશ્નપુસ્તિકા ખોલવી નહીં. Do not open the Question Booklet until ask to do so.

ઉમેદવારનું નામ : Candidates Name :		
ઉમેદવારનો સીટ નંબર	ઉમેદવારની સહી	ખંડ નિરીક્ષકની સહી
સમય : 60 મિનિટ	કુલ પ્રશ્નો : 50	કુલ ગુણ : 100

ઉમેદવારોને સૂચના

(1) આ પ્રશ્નપુસ્તિકામાં પ્રશ્ન ક્રમાંક 1-50 સુધી કુલ 50 પ્રશ્નો છે. પ્રત્યેક પ્રશ્નનો ઉત્તર (1), (2), (3) અને (4) પૈકી કોઈ એક છે. પ્રશ્નની સાથે જ ચારેય વિકલ્પો આપવામાં આવેલ છે. તમારે બધા જ પ્રશ્નોના ઉત્તર આપવાના છે. તમારે આ સાથે અલગ આપેલ ઉત્તરવહી (OMR SHEET)માં જ ઉત્તર આપવાના છે.

ઉદાહરણ તરીકે :

ભારતનું કયું રાજ્ય સૌથી લાંબો દરિયા-કિનારો ધરાવે છે ?

- (1) મહારાષ્ટ્ર
- (2) તામિલનાડુ
- (3) ગુજરાત
- (4) આંધ્રપ્રદેશ

જવાબવહી (Answer Sheet)માં

ઉપર્યુક્ત ઉદાહરણમાં સાચો જવાબ '3' છે. આથી '3'નું વર્તુળ કાળું (encode) કરેલ છે. ઉમેદવારોએ જવાબમાં ''ગુજરાત'' લખવું નહીં.

- (2) પ્રત્યેક પ્રશ્નના સાચા જવાબ માટે **(2)બે** ગુણ છે.
- (3) આ પ્રશ્નપુસ્તિકામાં તમારે કશું જ લખવાનું નથી.
- (4) સમય પૂર્ણ થયે પ્રશ્નપુસ્તિકા અને OMR ઉત્તરપત્ર સુપરવાઈઝરને પરત સોંપી દેવું.
- (5) કસોટીની સમય મર્યાદા 60 મિનિટ છે.
- (6) ઉમેદવારે **વાદળી / કાળી બોલપોઈન્ટ પે**નથી ઉત્તરો લખવાના છે. અન્ય શાહી, પેન કે પેન્સિલનો ઉપયોગ કરી શકાશે નહીં.

Instructions to Candidates

(1) In this Test Booklet, there are Ques. No. 1-50, total 50 questions. The answer of each is any one out of (1), (2), (3) and (4). Four alternatives are given with the question. You have to answer all the questions. You have to answer on the OMR Sheet given separately to you.

For example :

Which state of India has the longest sea coast?

- (1) Maharashtra
- (2) Tamilnadu
- (3) Gujarat
- (4) Andra Pradesh

In answer sheet :

In the above example, the true answer is '3'. Hence, the circle of '3' is blackened (encoded) candidates should not write 'Gujarat' in the answer.

- (2) Each correct answer carries (2)Two marks.
- (3) Do not write anything in this question paper.
- (4) Hand over Test Booklet and OMR Answer sheet to supervisor, after examination is over.
- (5) Time limit for this test is 60 minutes.
- (6) Use blue/black ball point pen for filling responses in Answer Sheet. Any other ink, pen or Pencil is strictly prohibited.

परीक्षा पूरी थया બાદ પ્રશ્नपुस्तिङा तथा OMR ઉત્તરવહી વર્ગ નિરીક્ષકને પરત કર્યા બાદ જ વર્ગખંડ છોડવાનો રહેશે. તેમ કરવામાં કસૂર થયેથી શિસ્તભંગનાં પગલાં ગણી પરીક્ષા માટે જે તે ઉમેદવારને ગેરલાયક ઠરાવવામાં આવશે.

1	Which of the following is the best example of 'defect' or 'omission solution'?			ample of 'defect' or 'omission solid	
	(1)	Topaz		(2)	Plagioclase
	(3)	Pyrrhotite		(4)	Pyroxene
2		ch of the followin	g pairs of	` mine	rals crystallizes in the same crystal
	(1)	Calcite-Aragonite	;		
	(2)	Orthoclase-Micro	ocline		
	(3)	Gypsum-Anhydri	le		
	(4)	None of the abo	ve		
3	Whi	ch of the followin	ng sedime	nt typ	es has the highest permeability.
	(1)	Mud			
	(2)	Mixture of sand	and mud		•
	(3)	Well sorted sand			
	(4)	Poorly sorted sar	nd		
4	The	Dynamothermal m	ıctamorphi	ism is	a metamorphism.
	(1)	Pre-Tectonic		(2)	Post Tectonic
	(3)	Syn Tectonic		(4)	None of the above
5	Cho	ose the correct op	tion based	d on	the following two statements:
	(A)	Fractional crysta depletion of Fu			ldspar in felsic magma leads to
	(B)	Eu in 2 ⁺ state is a	compatibl	e elen	nent in plagioclase-felsoc melt system
	(1)	Both (A) and (B	3) are con	rect	
	(2)	(A) is correct bu	ut (B) is	incort	ect
	(3)	Both (A) and (B	3) are inco	orrect	
	(4)	(A) is incorrect	but (B) is	s corr	ect
19-0	GEOL	OGY]		2	[Contd

6	In '	"flexures" the inter-limb an	gle lie	es between
	(1)	180° – 120°	(2)	120° – 70°
	(3)	70° – 30°	(4)	30° – 0°
7	Mat	tch the following and choo	sc the	correct answer:
		Type of Granitoids		Mode of Derivation
	A.	A-type granitoids	1.	By emplacement into non-oroganic settings
	В.	M-type granitoids	2.	From melting of subducted oceanic crust
	C.	S-type granitoids	3.	From igneous or meta-igneous rocks
	D.	I-type granitoids	4.	Sources that undergone atleast one weathering cycle
	(1)	A-1, B-2, C-4, D-3	(2)	A-2, B-4, C-1, D-3
	(3)	A-1, B-3, C-2, D-4	(4)	A-4, B-3, C-1, D-2
8	Mat	ch the names listed in Grou	ap I w	rith its attributes listed in Group II.
		Group I		Group II
	P.	Carlsberg Ridge	1.	Aseismic
	Q.	Ninetyeast Ridge	2.	Subduction
	R.	Pranhita – Godavari Basin	3.	Spreading
	S.	Makran Coasr	4.	Transform
			5.	Rift
		P-5; Q-3; R-1; S-4	(2)	P-3; Q-1; R-5; S-2
	(3)	P-3; Q-4; R-1; S-2	(4)	P-1; Q-3; R-5; S-4
9		anar flattening fabric, such a		v cleavage, schistosity or gneissosity
	(1)	XY	(2)	XZ
	(3)	YZ	(4)	Any of the above
10	Wha	t is the characteristic extinc	ction (of garnet under the microscope?
	(1)	0° extinction angle	(2)	15° extinction angle
	(3)	30° extinction angle	(4)	Isotropic
19 - G	EOL	OGY]	3	[Contd

11	Tap	hono	my i	s the	science de	ealing w	ith	
	(1) Study of the conditions of burial of fossils					ils		
	(2)	Re	const	ructio	n of paleo	-environ	ments by	means of fossils
	(3)				eservation			
	(4)				il pores a			
12	The	sim	plest	grade	of organi	zation in	sponges	is described as
	(1)		con			(2)	Leucon	
	(3)	Rh	agon			(4)	Ascon	
13	The	hyp	othesi	s that	life on ea	rth plays	an impor	tant role in regulating the
	plan	ietary	clim	ate is	known a	S		
	(1)	Ga	ia hy	pothes	sis	(2)	Harry H	ess hypothesis
	(3)	Gu	tenbe:	rg hy	pothesis	(4)	Horton h	nypothesis
14	Sort	ing e	of pai	rticles	is best in	1		
	(1)	flu	vial s	edime	ent	(2)	sand dur	ies
	(3)	bea	eh se	dimer	nt	(4)	loess sed	liment
15	Mat	ch lis	st I w	ith lis	t II and se	lect the c	orrect ans	wer using the code given
	belo	w th	e list	s :				
		Lis	t I					List II
	A.				ived from e the basi			1. Allochemical
	В.				cipitated f			2. Orthodorus 1
	۵.				ed into the		.~	2. Orthochemical
	C.				duced che		within	3. Paralic
					no evide			v. Cumiy
	Đ.				nvironmen		~	4. Terrigenous
				onditi			•	
	Code	e:						
		A	В	C	D			
	(1)	3	1	2	4			
	(2)	4	2	1	3			
	(3)	3	2	1	4			
	(4)	4	1	2	3			
19-G	EOL	OGY	1			4		[Contd

--- -

16	The	correlation of Precambrian	terra	nes is mostly based on
	(1)	Lithology	(2)	Fossil
	(3)	Crustal Upliftment	(4)	Eustatic Changes
17		he list are given names of gowing is correct as the list		rphic features. Suggest which of the ents of their formation:
	List	: demoiselles, poljes, bajao	da, co	rrie.
	Seq	uences :		
	(1)	wind, groundwater, river,	glacie	r
	(2)	groundwater, wind, river,	glacie	r
	(3)	wind, glacier, river, groun	dwate	r
	(4)	groundwater, glacier, river	, wind	l
				•
18	The	basin and ranges topograph	ny is	an effect of a
	(1)	Folding	(2)	Faulting
	(3)	Jointing	(4)	All of the above
19	The	mammoths lived in all cor	ntinent	s except
	(1)	Africa	(2)	Asia
	(3)	North America	(4)	South America
20		ments which are formed by r in place by crystallisation		precipitation of minerals from sea called as
	(1)	Terrigenous marine sedime	ents	
	(2)	Pelagic marine sediments		
	(3)	Authigenic marine sedimer	nts	
	(4)	None of these		
19-G	EOL	OGYJ	5	[Contd

21	According to Koppen's climate classification, AW is
	(1) tropical desert climate
	(2) tropical steppe climate
	(3) tropical dry-summer climate
	(4) tropical savanna climate
22	The salinity of seawater can be determined by the ratio of
	(1) Na/K (2) Ca/Na
	(3) C/C (4) Rb/Sr
23	The depth of the water can be determined by
	(1) He method
	(2) C^{14} method
	(3) Salinity - Temperature diagram
	(4) None of the above
24	Which one of the following is a fundamental requisite in any stratigraphic work?
	(1) The mineral contents in the rock
	(2) The tectonic set up in the rock sequence
	(3) The order of superposition of strata
	(4) Lateral continuity in the rocks
25	Which of the following is the correct order of elemental abundance in the universe
	(1) $H_2 > He > Ne > O > N_2$ (2) $H_2 > He > O > N_2 > Ne$
	(3) $H_2 > He > O > Ne > N_2$ (4) $H_2 > He > N_2 > O > Ne$
19-0	EOLOGY] 6 Contd

26	Cho	ondrites are consisting prim	arily o	of
	(1)	Olivine only		
	(2)	Pyroxene only		
	(3)	Iron and Nickel		
	(4)	Olivine and/or pyroxene		
27		iocarbon, used for dating sed osphere by the	iments	s, is produced at the top of the Earth's
	(1)	Primary cosmic ray proton	s react	ing with atmospheric carbon dioxide
	(2)	Primary cosmic ray proto	ns rea	ecting with atmospheric nitrogen
	(3)	Reaction of secondary ne	utrons	with atmospheric oxygen
	(4)	Reaction of secondary ne	utrons	with atmospheric nitrogen
				•
28		ap is prepared on 1:50,000 skm on the ground.	scale. I	How many cm on the map represents
	(1)	1	(2)	2
	(3)	3	(4)	4
				-ঞ্
29		ch of the following tectoni inent collision.	e feati	ares is a consequence of continent-
	(1)	Mariona trench	(2)	Mid-Atlantic Ridge
	(3)	Andes Mountains	(4)	Himalaya
30	The	linear flow of infiltration	was g	iven by
	(1)	H. Darsy	(2)	White
	(3)	Charles Linnaeus	(4)	Weber
19-0	GEOL	OGY]	7	[Contd

19-0	GEOL	.OGY]	8	[Contd
	(3)	Sand	(4)	Granite
	(1)	Air	(2)	Water
35	The	P-wave velocities are high	est in	
	(3)	Geomagnetic Profiling	(4)	Seismic Profiling
	(1)	Electric Profiling	(2)	Magnetic Profiling
34		'Schlumberger Configuration		
24	The	Sahlumhawaa Canfianatia	m² ‡~	used in
	(4)	Main central thrust		∕ জ্ব
	(3)	Himalayan frontal fault		
	(2)	Great boundary fault		
	(1)	Main boundary fault		
33		p of rocks and the Lesser		es the boundary between the Siwalik layas?
	(3)	I, III, II, IV	(4)	II, III, IV, I
	(1)	I, II, III, IV	(2)	IV, III, II, I
	IV.	Pitepani Volcanics		
	III.	Malani Volcanics		
	II.	Panjal Volcanics		
	I.	Dras Volcanics		
32	Arra	ange the following in the de	ecreas	ing order of their Age
	(3)	Pits and Shafts	(4)	Induced Recharge
	(1)	Water Spreading	(2)	Inverted Wells
31	Dee	ply confined aquifers can b	e recl	narged by means of

-

36		ider the following statement sit in India:	ts, ass	sociated with Malanjkhand copper			
	1.	1. Richest copper deposit in India.					
	2. It is a sedimentary copper deposit.						
	3.	Molybdenum, gold and silver	can b	e recovered from this copper deposit.			
	4.	Copper confined in quartzi	tes.				
	Whic	th of these statements are c	orrect	?			
	(1)	1, 2 and 3	(2)	1, 3 and 4			
	(3)	2, 3 and 4	(4)	2 and 4 only			
37	Matc	h the following and choose	the o	correct answer :			
		Basin		Type			
	Λ.	Cambay Basin	1.	Offshore and Onshore			
	B.	Bombay High	2.	Onshore			
	C.	Krishna – Godavari Basin	3.	Offshore			
	D.	Bengal Basin		i,			
	(1)	A-2, B-3, C-3, D-1	(2)	A-2, B-3, C-1, D-1			
	(3)	Λ-3, B-3, C-2, D-1	(4)	Λ-2, B-1, C-1, D-2			
38	Whic	ch of the following is essen	ntial fo	or chemical weathering ?			
	(1)	Temperature	(2)	Precipitation			
	(3)	Pressure	(4)	Mass Movement			
39	Biogeochemical method of exploration includes the :						
	(1)	Chemical analysis of element	ents i	n vegetation.			
	(2)	Chemical analysis of under	rlying	soils.			
	(3)	Chemical analysis of eleme	nts in	vegetation and its underlying soils.			
	(4)	Analysis of biological char	racters	of the soil.			
40	Rem	ote sensing can be as basic	: as				
	(1)	putting cameras on camels	(2)	putting cameras on airplanes			
	(3)	TV remotes	(4)	putting sensors on satellites			
19-0	EOL	OGYJ	9	[Contd			

I

19-G	EOL	OGY] 1	10	[Contd
	(4)	a suspected reserve		
	(3)	a tentatively calculated rese	erve	
	(2)	a geologically presumed or	e bod	У
	(1)	a geologically identified or	e bod	у
45		rding to the Hoofer's classifi rve' implies.	cation	of ore reserves, the term 'Possible
	(4)	None of the above.		
	(4)	None of the above.	el is	excavated.
	(3)	-	els to	support the pressure exerted by the
	(2)	The injection of suitable mopen fissures.	ateria	into the earth's crust to seal any
	(1)	A process of determining the	coeffic	cient or water saturation of a material.
44	'Gro	uting' may be described as	:	
	(4)	A high value of relative hum spread.	idity i	mplies a low temperature-dew point
	(3)	The dew point increases as	s prec	ipitation evaporates into the air.
	(2)	Frost is likely if the air is o	cooled	to its (below freezing) dew point.
	(1)	Water evaporates when air	is co	oled to its dew point.
43	Whic	ch of the following statemer	nts is	false ?
	(3)	Isallobars	(4)	lsobars
	(1)	Isotherms	(2)	Isotachs
42	Lines	s connecting areas of equal	air p	ressure are called
	(3)	Spatial Data	(4)	Complex Data
	(1)	Numeric Data	(2)	Binary Data

41

GIS deals with which kind of data

46	"S	"Swarms" are minor earthquakes which are mostly of:					
	(1)	Shallow focus	(2)	Intermediate focus			
	(3)	Deep focus	(4)	A combination of the above			
47	Wh pol	nich of the following mineral pars ?	ргорег	ties can not be seen between crossed			
	(1)	Cleavage	(2)	Pleochroism			
	(3)	Inclusions	(4)	Twining			
48	Low	v angle normal faults are ca	ılled				
	(1)	Thrust	(2)	Shear Zones			
	(3)	Listric Faults	(4)	Lags			
49	wea	thering is:		oility of minerals during chemical			
	(1)	quartz, feldspar, pyroxene,	olivin	ne			
	(2)	quartz, pyroxene, feldspar,	olivin	ae			
	(3)	quartz, pyroxene, olivine, l	feldspa	ar [®]			
	(4)	feldspar, olivine, amphibole	e, pyro	oxene			
50	Whi	ch one of the following is d India?	letrime	evel westerly jet stream Bhul Kachchh 370001			
	(1)	Northward movement of up	pper 1	evel westerly jet stream			
	(2)	Strengthened Mascarene hig	gh	(ま) (Bhuj-Kachchh) ま 370001) こ			
	(3)	Strengthened easterly jet str	ream	ne west of its mean position			
	(4)	Shift of Tibetan anticyclone	e to tl	ne west of its mean position			
19-G	EOL	OGY] 1	1	[Contd			

19-GEOLOGY]